Common Core Algebra II

MRS21 Course Overview (Tentative)

Unit #1	Algebraic Expressions and Operations on Polynomials	
	Lesson #1: Classifying Polynomials and Evaluating Expressions	
	 Lesson #2: Operations on Polynomials (addition, subtraction, multiplication) 	
Total:	 Lesson #3-4: Special Polynomial Identities 	
6 days	Lesson #5-6: Binomial Expansion	

Unit #2	Functions and Their Characteristics	
	Lesson #1: Introduction to Non-Linear Functions	
	 Lesson #2: Function Notation and Composition of Functions 	
Total:	 Lesson #3: Domain and Range of a Function 	
9 days	Lesson #4: Inverses of Linear Functions	
	Lesson #5: Key Features of Functions	
	 Lesson #6: Solving Systems of Equations Graphically (involving higher degree equation given 	
	in function notation, discuss 3 cases, use calculator)	
	Lesson #7-9: System of Three Linear Equations	

Unit #3	Quadratic Functions and Their Algebra	
Total: 14 days	 Lesson #1: Review of Factoring Methods(GCF, trinomial, special binomials) Lesson #2: Factoring Completely Lesson #3: Factoring by Grouping Lesson #4: Equivalence of Expressions and Functions (see #5, 20 august, #8, #31 june Lesson #5: Quadratic Function Review Lesson #6: Completing the Square and Shifting Parabolas Lesson #7: Intercept Form of Quadratic Function Lesson #8: Solving Quadratics Using Zero Product Rule Lesson #9: Modeling with Quadratic Functions Lesson #10: Solving Systems Involving Lines, Circles, and Parabolas Algebraically (see #33 june Lesson #11: The Locus Definition of a Parabola Lesson #12-13: Equation of Parabola with Vertex not at the Origin (Horizontal and Vertical Shift) Lesson #14: Writing Equation of Parabola Using Locus Definition 	

Unit #4	Complex Numbers
Total: 5 days	 Lesson #1: Imaginary Number Lesson #2: Simplifying Powers of <i>i</i> and intro to Complex Numbers Lesson #3: Operations on Complex Numbers (#27 august Lesson #4: Solving Quadratic Equations with Complex Solutions Lesson #5: The Discriminant and the Nature of the Roots

Unit #5	Polynomial Functions and their Algebra	
Total: 11 days	 Lesson #1: Long Division of Polynomials Lesson #2: Synthetic Division of Polynomials Lesson #3: Application of Synthetic Division of Polynomials Lesson #4: Remainder and Factor Theorem Lesson #5: Solving Higher Degree Polynomial Equations Lesson #6: Writing Equations of Higher Degree Polynomial Functions given their roots Lesson #7: Graphs and Zeros of Polynomial Functions Lesson #8-9: Sketching the Graphs of Polynomial Functions Lesson #10: Even and Odd Functions 	

Unit #6	Rational Expressions and Equations	
Total: 7 days	 Lesson #1: Simplifying Rational Expressions Lesson #2: Multiplying and Dividing Rational Expressions 	
	Lesson #3-4: Adding and Subtracting Rational Expressions (#17 august	
	 Lesson #5: Complex Fractions Lesson #6: Solving Rational Equations 	
	Lesson #7: Applications of Rational Equations	

Unit #7	Powers and Radicals	
Total: 7 days	 Lesson #1: Review of Integer Exponents Lesson #2: Fractional Exponents Lesson #3: Properties of Exponents and Radicals Lesson #4: Simplifying Radical Expressions (#26 august) Lesson #5: Solving Square Root Equations Lesson #6: Solving Cube Root, Forth Root Equations, and Equations with Fractional Exponents 	
7 days	 Lesson #7: EXTENSION Graphing Square Root and Cube Root Functions 	

Total: 59 lessons.

On-line resources:

- 1. eMath instruction lessons: http://emathinstruction.com/common-core-algebra-ii-all-units-first-draft/
- 2. LearnZillion CC Standards with aligned on-line lessons: https://learnzillion.com/common_core/math/algebra
- 3. Mathbitsnotebook:

Unit #1: Algebraic Expressions and Linear Functions

• Lesson #1: Classifying Polynomials and Evaluating Expressions

Standards		
Objectives	 State the degree of a polynomial and the number of terms in a polynomial Add and subtract expressions with multivariable terms like -13x²y⁴ Evaluate expressions with multivariable terms Add and subtract polynomials EXTENSION: (see Engage NY Lesson #1 Mod #1) Determine the 1st, 2nd, and 3rd difference of any second degree or third degree polynomial (n-th degree polynomial will have a constant n-th difference) Determine the degree of a polynomial given the table of values generated by a polynomial) 	
Resources	Amsco: p.6-8, p.133-137	eMath: Unit #1 lesson #1 Engage NY: Lesson #1 Mod #1

• Lesson #2: Multiplying Polynomials

Lesson #2. Wattipfying i olynomiais			
Standards	A-SSE.A.2 & A-APR.C.4 Practice MP.7 & MP.8		
Objectives	• Multiply binomials, trinomials, and higher degree polynomials using distributive method • Use distributive property to prove useful identities such as: $(a+b)^2 = a^2 + 2ab + b^2, \\ (x^n - y^n)(x^n + y^n) = x^{2n} - y^{2n}, \text{ including } (x-y)(x+y) = x^2 - y^2 \text{ and } (x^2 - y^2)(x^2 + y^2) = x^4 - y^4 \\ \text{EXTENSION: Multiply polynomial using area model (tabular method)}$		
Resources	Amsco: p.39 – 40, p.137	eMath: Unit #1 lesson #4, 5	
IMG 1185	Assessment Readiness p.27	EngageNY: Mod #1 Lesson # 2	

• Lesson #3: Special Polynomial Identities

Ec33011 #3. 3pc	ni #5. Special Polyholillal Identities		
Standards	A-SSE.A.2, A.APR.C.4, & Practice MP.7		
Objectives	 x⁴ - y⁴ as (x²)² - (y²)², thus recogn factored as (x² - y²)(x² + y²) use the perfect square binomial identit problems Use sum and difference of cubes identit EXTENSION: Use the polynomial identity (x 	dentify ways to rewrite it. For example, see izing it as a difference of squares that can be $ (x - y)^2 = x^2 - 2xy + y^2 $ on more complex ities	
Resources	Amsco: p.80-88, 93	eMath: unit # 10 lesson #4	
	See assessment readiness questions	Engage NY: Mod #1 Lesson #2, #10	

Unit #2: Functions and Their Characteristics

• Lesson #1: Introduction to non-Linear Functions

Standards	MP. 8. Look for and express regularity in repeated reasoning. F-IF.1	
Objectives	Identify independent and dependent variable	

	Determine whether relation is a function using the vertical line test		
	 Determine if a function is one-to-one (horizontal line test) or onto 		
	 Distinguish between different types of functions (linear, quadratic, absolute value, 		
	square root, exponential) given their equations and/or graphs		
Resources	Amsco: p.48 - 49	eMath: Unit #2 lesson #1, lesson #5	
		Engage NY:	

Lesson #2: Function Notation and Composition of Functions

Standards	F-IF.1, F-IF.2		
Objectives	Recognize and interpret different function notations		
	• Given f(x) (linear or quadratic), find f(x-a) or f(x+a) where 'a' is rational number		
	Evaluate a given function for a given value		
	Given equations of functions, find composition of functions using two different notations		
	f(g(x)) or f o $g(x)$		
	Find composition of functions using graphs of functions		
Resources	Amsco: p.22-24,	eMath: Unit #2 lesson #2, lesson #3	
		Engage NY:	

• Lesson #3: Domain and Range of a Function

Standards	F-IF.1, F-IF.5	
Objectives	graph	f the domain, find the corresponding value of
	Find restricted domain and range of rational and radical functions	
Resources	Amsco:	eMath: unit #2 lesson 4
		Engage NY:

• Lesson #4: Inverses of Linear Functions

Standards	F-BF.4
Objectives	 Define inverse of a function Find inverse of a linear function algebraically (in a slope-intercept form or point-slope form) and graphically Find inverse of different functions given a table of values, an equation, or a graph Explore the inverse relationship of linear functions using graphing calculator EXTENSION: find an inverse of cubic and square root functions
Resources	Amsco: p.281-285 Pearson: 409-410 eMath: Unit #2 lesson #6, Unit #3 lesson #5

• Lesson #5: Key Features of Functions

Standards	F-IF.4		
Objectives	State zeros of a function given	nimum and maximum of a function sing intervals of a function	
Resources	Amsco:	eMath: unit #2 lesson #7 Engage NY:	

Lesson #6: Solving Systems of Equations Graphically

Standards	F-IF.4	
Objectives	 (involving higher degree equation given in function notation, discuss 3 cases, use calculator) 	
Resources	Amsco:	eMath: unit #2 lesson #7 Engage NY:

• Lesson #7-8: System of Three Linear Equations

Lesson in 6. System of three Emedi Equations		
Standards	MP 7. Look for and make use of structure. MP 1. Make sense of problems and persevere in	
	solving them.	
Objectives	(#23 august, algebraically, calculator, application)	
	Solve system of linear equations with three variable by using elimination or substitution	
	 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. EXTENSION: Given three points of the parabola, write a quadratic equations for this function 	
Resources	Amsco: p.72-74	eMath: Unit #3 lesson #7
		Engage NY: Mod 1 lesson #30

Unit #3: Quadratic Functions and Their Algebra

• Lesson #1: Review of Factoring Methods

	20000111121101101101101101101101010		
Standards	N-Q.A.2, A-SSE.A.2, A-APR.B.2, A-APR.B3, A-APR.D.6, F-IF.C.7c. MP 7: Look for and make use of		
	structure		
Objectives	Factor using GCF		
	Factor using the difference of two perfect squares		
	Factor quadratic trinomials with leading coefficient 1		
	Factor perfect square trinomials		
Resources	Amsco: p.79 - 80	eMath: unit #6 lesson #2	
	·	Engage NY:	

Lesson #2: Factoring Completely

Standards	N-Q.A.2, A-SSE.A.2, A-APR.B.2, A-APR.B3, A-APR.D.6, F-IF.C.7c		
Objectives	 Factor more complex difference of position Factor polynomials completely Apply factoring strategies to solve a research 	 Factor more complex difference of perfect squares and perfect square trinomials Factor polynomials completely Apply factoring strategies to solve a real-world problem EXTENTION: Factor polynomials with a binomial common factor. Ex: x²(2x + 1) - 4(2x + 1) 	
Resources	Amsco: p.80 – 83, 85	eMath: unit #6 lesson #4	
IMG 1227		Engage NY: Mod #1 Lesson #13	

Lesson #3: Factoring by Grouping

Standards	A-REI.4.b	
Objectives	Factoring four-term polynomials by identifying a common binomial factor(by grouping)	
	Factoring quadratic trinomials with a>1 by grouping	
Resources	Amsco: p.84, 88	eMath: unit #6 lesson #5
		Engage NY: Mod #1 Lesson #12, 13

Lesson #4: Equivalence of Expressions and Functions

Standards	MP 7. Look for and make use of structure. MP 1. Make sense of problems and persevere in solving them.	
Objectives	 Use polynomial identities to show that two expressions are equivalent Use polynomial identities to prove that an equation is an identity 	
Resources	Amsco: p.72-74	eMath: Unit #3 lesson #7 Engage NY: Mod 1 lesson #30

• Lesson #4: Quadratic Function Review (standard form, axis of symmetry, vertex, intercepts)

Standards	F-IF.4, F-IF.7.a	
Objectives	 Sketch parabola given its equation in a standard form Find main characteristics of a parabola such as turning point (vertex), axis of symmetry, and x and y-intercepts State domain and range of a given quadratic Indicate the interval on which the function is positive or negative, increasing and decreasing 	
Resources	Amsco:	eMath: unit #6 lesson #1 Engage NY:

• Lesson #5: Completing the Square and Shifting Parabolas (getting parabola to vertex form and analyzing the shift of a vertex)

Of a vertexy		
Standards	F-IF.8.a, F-BF.3	
Objectives	 Rewrite quadratic equation from standard form to a vertex form Given the vertex form of the equation state the turning point Introduce transformation notation of a function af(x-h)+k and analyze the horizontal and vertical shift of a vertex of a parabola EXTENSION: Compare completing a square method to other methods of solving quadratics 	
Resources	Amsco: p.42-43	eMath: unit # 6 lesson #8 Engage NY: Mod #1 Lesson # 35

• Lesson #6: Intercept Form of Quadratic Function

Standards	F-IF.8.a, F-BF.3	
Objectives		
Resources	Amsco:	eMath:

Lesson #7: Solving Quadratics Using Zero Product Rule

Standards	A.APR.B.3, F-IF.8.a	
Objectives	 Solving quadratics by factoring, including factoring by grouping 	
	 Writing equation of quadratic by identifying the roots from the graph and working backwards 	
Resources	Amsco: p.89-91	eMath: unit #6 lesson #6
		Engage NY:

• Lesson #8: Modeling with Quadratic Functions

Standards	F-IF.8.a, F-IF.9, F-IF.4, F-IF.5	
Objectives	 Real world application of quadratic function (finding maximum height, time an object lasts in the air, etc.) Create a graph of a quadratic using appropriate scale related to a given word problem Explain the meaning of x and y-intercepts in the context of the problem Use graphing calculator 	
Resources	Amsco:	eMath: unit #6 lesson #9
	Big Ideas: Chapter 2.4	Engage NY:

• Lesson #9: Systems Involving Lines, Circles, and Parabolas

,	, ,	
Standards	A-REI.7	
Objectives	Review of distance formula and general equation of a circle	
	Solving systems of linear-circular, circular-parabolic equations graphically	
	 Solve algebraically and graphically a system 	of linear-quadratic equations
Resources	Amsco: p.175-178	eMath: unit #6 lesson #10
		Engage NY: Mod 1 lesson #31, 32

• Lesson #10: The Locus Definition of a Parabola

Standards	G-GPE.A.2, F-EF.8	
Objectives	down, left or rightWrite an equation of a parabola cenIdentify vertex, focus, and directrix of	$y = \frac{1}{4p}x^2$ or $x = \frac{1}{4p}y^2$ to determine if it opens up, itered at the origin and with a given focus of a parabola given its equation its equation in the above described forms
Resources	Amsco: p. 118-125 Pearson: 622 - 625 Big Ideas: Chapter 2.3	eMath: unit #6 lesson #11 Engage NY: mod 1 lesson #33, 34 Pearson: p.622

• Lesson #11-12: Equation of Parabola with Vertex not at the Origin

	1
Standards	G-GPE.A.2
Objectives	Represent vertical and horizontal shifts of a parabola with an appropriate analytic
	equation in the form of $(x - h)^2 = 4p(y - k)$, $(y - k)^2 = 4p(x - h)$
	Find the vertex, focus, and directrix of a given parabola in the above mentioned form
	Match equation of the parabola in analytic form with its corresponding graph
	Find vertex of a parabola given its analytic equation

Resources	Amsco: p. 118-125 Pearson: 626-629	eMath: unit #6 lesson #11
	Assessment Readiness: p.101 -102	Engage NY: mod 1 lesson #33, 34
		Pearson: p.626

• Lesson #13: Writing Equation of Parabola Using Locus Definition

Standards	G-GPE.A.2	
Objectives	 Write an equation of a parabola with given vertex and focus Write an equation of a parabola with given vertex and directrix Write equation of a directrix given focus and vertex Find the equation of the set of points which are equidistant from a given point and a directrix (example: point (4, -2) and the line y =4). Sketch this set of points EXTENSION: 	
Resources	 Write an analytic equation of a parabola Amsco: p. 118-125 	eMath: unit #6 lesson #11
	·	Engage NY: mod 1 lesson #33, 34

Unit #4: Complex Numbers

• Lesson #1: Imaginary Number

Standards	N-CN.A.1, N-CN.A.2, N-CN.C.7, MP 8. Look for and express regularity in repeated reasoning.	
Objectives	State the definition of the imaginary unit <i>i</i> and pure imaginary numbers	
	Simplifying radicals with the negative radicands	
	Solve incomplete quadratics which lead to imaginary roots	
	Simplifying powers of i	
Resources	Amsco: p.103-105	eMath: unit #9 lesson #1
		Engage NY: Mod #1 Lesson #37

• Lesson #2: Operations on Complex Numbers

Standards	N-CN.A.1, N-CN.A.2, N-CN.A.4, N-CN.C.7	
Objectives	 Adding and subtracting complex numbers Finding conjugates of complex numbers Multiplying complex numbers Extension: Graph complex numbers on a complex plane 	
Resources	Amsco: p. 103-105	eMath: unit #9 lesson #2 Engage NY: Mod #1 Lesson #38

• Lesson #3: Solving Quadratic Equations with Complex Solutions

Standards	N-CN.C.7, A-REI.B.4b	
Objectives	 Solve quadratic equations with complex roots using quadratic formula and square root method Rewrite quadratic equation in a factored form using its real and complex roots 	
	 Counting multiplicities –quadratics having 	ng two roots in the complex numbers system
Resources	Amsco: p. 108-113	eMath: unit # 9 lesson #3
		Engage NY:

• Lesson #4: The Discriminant and the Nature of the Roots

Standards	N-CN.C.7, A-REI.B.4b, A-APR.3, F-IF.8a MP 3 Construct viable argument and critique the	
	reasoning of others, MP 7 Look for and make use of structure	
Objectives	define and determine the value of the discriminant	
	 determine the nature of the roots using the discriminant 	
	Describe how finding discriminant relates to finding x-intercept of a parabola	
	Construct viable argument and critique the reasoning of others	

Resources	Amsco: p. 108 - 113	eMath: unit #9 lesson #4
		Engage NY: Mod #1 Lesson #39

Unit #5: Polynomial Functions and their Algebra

• Lesson #1: Long Division of Polynomials

Lesson with Long Division of Confidentials		
Standards	A-APR.B.2, A-APR.6, A-APR.7, MP 6 Attend to precision	
Objectives	Divide different degree polynomials by a binomial using long division	
	 Insert terms with zero as a coefficient for "missing powers" 	
	 Using long division determine if a given binomial is a factor of a given polynomial 	
Resources	Amsco: p.138 – 141, Pearson: 304-306	eMath: Unit #10 Lesson #10
	Big Ideas: Chapter 4.3	Engage NY: Mod #1 Lesson #18

• Lesson #2: Synthetic Division of Polynomials

Standards		
Objectives	Dividing polynomials applying the method of synthetic division	
Resources	Amsco: p.142 – 143	eMath:
	Big Ideas: Chapter 4.3	Engage NY:

• Lesson #3: Remainder and Factor Theorem

Lesson #3. Re	mamuer and Factor Theorem		
Standards	A-APR.D.6, A-APR.B.2		
Objectives	 Evaluating polynomial by the Remainder Theorem Determine if a given polynomial is divisible by a given binomial factor (The Factor Theorem) Show how the Remainder theorem can help determine if a given number is the root of the polynomial. (NOTE: If r is a root of a polynomial then x - r is a factor of a 		
Resources	Amsco: 147 - 151		
		Engage NY: Mod #1 Lesson #18, 19. See Lesson #20-21 for application of the Rem. Theorem	

• Lesson #4 - 5: Finding Roots of Higher Degree Polynomial Equations

Standards	A.APR.B.3, N-CN.C.7, F-IF.7.C MP 6 Attend to precision, MP7 Look for and make sense of structure
Objectives	 Test if a given number is the solution of a higher degree polynomial equation using the Remainder Theorem using Fundamental Theorem of Algebra state the number of zeros of a polynomial function solve a polynomial equation of 3rd degree given one of the factors and by applying synthetic division to find the remaining factors State the multiplicity of roots of a polynomial function Solve high order polynomials by factoring completely where some of the factors are complex numbers (Example: x⁴ -3x² - 4 = 0 as (x + i)(x - i)(x + 2)(x - 2)) Next lesson State the difference between the solution(s) of the equation and x-intercepts (solutions)
	State the difference between the solution(s) of the equation and x-intercepts (solutions

	 may include complex numbers, x-intercepts are real solutions of the equation) Construct a polynomial function in a factored form that has a specified set of zeros with stated multiplicity (including complex factors) EXTENSION: Descartes' Rule of signs 	
Resources	Amsco: p.152-154, 160-161 Pearson: 288-293, 296 Decart's rule 165-167	eMath: unit # 10 lesson # See Engage NY: Mod #1 Lesson #11, 39

Lesson 5:

- Classify polynomials by degree
- Give an example of a quadratic equation with two distinct real solutions, one real solution, or two complex solutions
- Factor polynomial of the form $(x^2 + a)$ as (x + ai)(x ai)(Example: $x^2 + 9 = (x + 3i)(x - 3i)$
- Determine if a complex number is a solution to a given quadratic

• Lesson #6: Graphs and Zeros of a Polynomial Function.

20000111101 Oraphio and 20100 of a 1 or) Horman and and		
Standards	F-IF.7.c, N-CN.9, A-APR.3	
	MP 5 Use appropriate tools strategically, MP 3 Construct a viable argument to critique the	
	reason of others, MP 7 Look for and make use of structure	
Objectives	 Determine the number of real zeros, complex zeros, given the graph of a function and its equation Determine the degree of a polynomial function given its graph Create a sketch of higher degree polynomial function utilizing graphing calculator 	
	Critique reasoning of others	
	EXTANSION: determine degree of a polynomial by finding consecutive differences	
Resources	Amsco: p.154-164 Pearson: 280-287	eMath: unit # 10 lesson #2,3
		See Engage NY: Mod #1 Lesson #14, 40

• Lesson #7: Even and Odd Degree Functions

Standards		
Objectives	 State characteristics of odd and even degree functions Identify the type of a given function based on a graph 	
	 Investigate graphs of polynomial functions (the number of relative minima and maxima, increasing and decreasing intervals) Sketch polynomial functions using its properties 	
	Sketch polyhormal functions using its properties	
Resources	Amsco: p.52	eMath: Unit #7 Lesson #5
		See Engage NY: Mod #1 Lesson #15

• Lesson #8: Structure in Graphs of Polynomial Functions

Standards	
Objectives	 Determine end behavior of polynomial functions by looking at the leading coefficient Match graphs of polynomial functions with their corresponding equations Find a polynomial function given its zeros or given its graph Use factored form of a polynomial function to sketch the components of its graph between zeros EXTENSION: Real word application of polynomial function (create appropriate graphical representation)

Resources	Amsco: p.159-164, Pearson 325	eMath: unit # lesson #
		See Engage NY:

Unit #6: Rational Expressions and Equations

• Lesson #1: Simplifying Rational Expressions

Standards	A-APR.C.6, A-REI.A.2	
Objectives	 State which values will make the rational expression undefined State the domain of a rational function Reduce rational expressions to lowest terms Determine if the given two rational expressions are equivalent 	
Resources	Amsco: p. 185-187 Pearson: 527, 531	eMath: Unit #10 Lesson #6 See Engage NY: Mod #1 Lesson #22,23

• Lesson #2: Multiplying and Dividing Rational Expressions

	<u>, , , </u>	
Standards	Practice MP.7, A-APR.D.6	
Objectives	Multiply and divide rational expressions and express them in a simplest form	
	Simplify complex fractions by the process of dividing one rational expression by another	
Resources	Amsco: p.187 – 192 Pearson: 528-533	eMath: Unit #10 Lesson #7
		See Engage NY: Mod #1 Lesson #24

• Lesson #3: Adding and Subtracting Rational Expressions

Standards	Practice MP.7, A-APR.C.6	
Objectives	 Find a common multiple of the denominators to use as a common denominator Find equivalent rational expressions for each expressions using the common denominator Complete multistep problem involving adding, subtracting, multiplying, and dividing rational expressions 	
Resources	Amsco: p. 192 – 197 Pearson: 534 - 540	eMath: Unit #10 Lesson #8 See Engage NY: Mod #1 Lesson #

• Lesson #4: Complex Fractions

Standards		
Objectives	Simplify complex fractions by the process of dividing one rational expression by another	
Resources	Amsco: p.190, 192 eMath: Unit #10 Lesson #9	
		See Engage NY: Mod #1 Lesson #

Lesson #5: Solving Rational Equations

Standards	A-REI.A.2, F-BF.B.4a, Practice MP.7	
Objectives	 Solve rational equations by cross-multiplying or multiplying each term by a common denominator Check for extraneous solutions EXTENSION: word problems leading to rational equations (see Engage NY Mod #1 Lesson #27) 	
Resources	Amsco: p.197 – 204 Pearson: 542 - 547	eMath: Unit #10 Lesson #12
		See Engage NY: Mod #1 Lesson #26

• Lesson #6: Solving word problems leading to rational equations

Unit #7: Powers and Radicals

• Lesson #1: Review of Integer Exponents

Standards			
Objectives	 Use appropriate laws of exponents to simplify expressions with positive, negative, and zero exponents 		
	Rewrite expressions using only positive exponents		
Resources	Amsco:	Pearson: 360	eMath: Unit #8 Lesson #3, Unit #4 Lesson #1
			See Engage NY: Mod #1 Lesson #

Lesson #2: Fractional Exponents

Standards	N-RN.A.1	
Objectives	Simplify expressions including rational exponents	
	Multiply and divide expressions with rational exponents	
	EXTENSION: Irrational Exponents ($2^{\sqrt{2}}, 2^{\pi}$)	
Resources	Amsco: p.241 Pearson: 381-387	eMath: Unit #4 Lesson #2 , Unit #8 Lesson #5
		See Engage NY: Mod #1 Lesson #9

• Lesson #3: Properties of Exponents and Radicals

Standards	N-RN.A.2	
Objectives	 Rewrite expressions involving radicals in terms of rational exponents using the properties of exponents 	
	 Simplify more complex expressions with 	n radicals
Resources	Amsco: p.241 – 244, Pearson:363 -380	eMath:
		See Engage NY: Mod #1 Lesson #9

• Lesson #4: Simplifying Radical Expressions

Standards		
Objectives	 Simplify square roots and cubed roots with variables and exponents as radicands (including negative radicands) Rationalize the denominator in a given expression Adding, multiplying, dividing radicals 	
Resources	Amsco: p.224 – 230, 237 -238 Pearson: 363 - 380	eMath: See Engage NY: Mod #1 Lesson #9,28

• Lesson #5: Solving Square Root Equations

Standards			
Objectives	 Solve radical equations and check for extra Justify the steps in solving radical equation Solving radical equations by moving one of equation and squaring both sides of the equation and squaring both sides of the equation and variations of i Identify radical equations that do not have 	ns f the radicals to the opposite side of the quation it)	
Resources		eMath: Unit #8 Lesson #2 See Engage NY: Mod #1 Lesson #28,29	

• Lesson #6: Solving Cube Root, Forth Root Equations, and Equations with Fractional Exponents

Standards		
Objectives	 Solve radical equations with higher index value by raising both sides of the equation to an appropriate power 	
	Solve equations with fractional exponents	
Resources	Amsco: p.249, 257	eMath: Unit #4 Lesson #2
		See Engage NY: Mod #1 Lesson #

• Lesson #7: Graphing Square Root and Cube Root Functions (using calculator, and stating domain, range and translations)

Standards		
Objectives	 Graph square root and cube root functions using calculator Describe the characteristics of the above functions (domain, range, intervals of increase and decrease, end behavior) 	
	Sketch vertical and horizontal translations of the above functions	
Resources	Amsco: p.251 – 255 Pearson: 414-420	eMath: Unit #8 Lesson #1
		See Engage NY: Mod #1 Lesson #

Unit #8: Sequences and Series

• Lesson #1 - 2: Review of Geometric and Arithmetic Sequences

Standards	F-BF.1.A		
Objectives	Determine if a given sequence is arithmetic or geometric		
	 Write explicit equations of a given 	• Write explicit equations of a given geometric ($a_n = a_1 r^{n-1}$) or arithmetic sequence	
	$(a_n = a_1 + (n-1)d)$		
	Compare and contrast the explicit formula of two sequences		
	 Find the nth term of an arithmetic or geometric sequence 		
Resources	Amsco: Pearson: 574-586	eMath: Unit # Lesson #	
	Big Ideas: Chapter 8.1, 8.2	See Engage NY: Mod #1 Lesson #	

• Lesson #3: Explicit and Recursive Formula for Geometric and Algebraic Sequences

Standards	F-BF.2, F-EF.8		
Objectives	Write a recursive rule for given sequence of numbers (arithmetic and geometric)		
	 Apply recursive definition of arithmetic or geometric sequences to find several terms of 		
	a given sequence		
	 Translate a recursive rule into explicit equation and vice versa 		
Resources	Amsco: Pearson: 567-571	eMath:	
	Big Ideas: Chapter 8.5	See Engage NY: Mod #1 Lesson #	

• Lesson #4: Arithmetic and Geometric Series and Sigma Notation

Lesson in 1.7 Antimiente and Geometrie Series and Signia Notation				
Standards	F-BF.2, F-EF.8			
Objectives	Compare and contrast sequences and series			
	State the formula of a sum of Arithmetic and Geometric Series			
	 Find the sum of the first n terms of a given series Find sums using Sigma notation 			
Resources	Amsco: Pearson: 588-600 eMath:			

_		
	Distribution Character 0.2.0.4	Con France NIV: NACH HA Lancon H
	Big Ideas: Chapter 8.3, 8.4	See Engage NY: Mod #1 Lesson #

• Lesson #5: Geometric Series Application

Standards	F-LE.A.2, F-BF.1.A, F-BF.2	
Objectives	 Write an explicit rule for the geometric sequence that models a real life problem and solve the problem Given table of values that represents money earning scenario determine the rule needed to find money saved in 'n' weeks Match recursive definition of geometric series with a real life scenario 	
Resources	Amsco:	eMath:
	See IMG	See Engage NY: Mod #1 Lesson #

SEE NEXT PAGE for MRS22 Overview

MRS22 Tentative Course Overview

Unit #9: Exponential and Logarithmic Functions

- Lesson #1: Exponential Functions Basics (general form, determine if it is a growth or decay model based on a given equation or a graph)
- Lesson #2: Finding Equations of Exponential Functions (from a table or a graph, or coordinates of two points)
- Lesson #3: Solving Exponential Equations by Finding a Common Base
- Lesson #4: Modeling with Exponential Growth and Decay
- Lesson #5: Introduction to Logarithms
- Lesson #6: Graphs of Logarithmic Functions (including inverse relation between logarithmic and exponential functions)
- Lesson #7: Laws of Logarithms (possibly 2 days)
- Lesson #8: Natural and Base-10 Logarithms
- Lesson #9: Solving Logarithmic Equations
- Lesson #10: Solving Exponential Equations Using Logarithms
- Lesson #11: Compound Interest Problems

.

Unit #8	Sequences and Series	
	 Lesson #1 - 2: Review of Geometric and Algebraic Sequences 	
	 Lesson #3: Explicit and Recursive Formula for Geometric and Algebraic Sequences 	
Total:	 Lesson #4: Arithmetic and Geometric Series and Sigma Notation 	
5 days	Lesson #5: Geometric Series Application	
	 !!! NOTE: heavy emphasis on recursive definition of geometric sequence in the contex of word problem. More days might be needed. 	

Unit #10: Transformations of Functions

- Lesson #1: Shifting and Reflecting Functions (quadratic, exponential, square root functions, reference to notation af(x – h) +k)
- Lesson #2: Key features of Different types of functions (domain, range, end behavior, increase/decrease, roots)
- Lesson #3: Rate of Change of Quadratic and Exponential Functions

Unit #11: Circular Functions - Trigonometry

Consider starting with periodic functions intro Pearson: 828-834

- Lesson #1: Rotations and Angle Terminology
- Lesson #2: Radian Angle Measurement
- Lesson #3: The Unit Circle
- Lesson #4: The Definition of the Sine and Cosine Functions
- Lesson #5: Basic Graphs of Sine and Cosine
- Lesson #6: Vertical and Horizontal Shifting of Sinusoidal Graphs
- Lesson #7: The Frequency and Period of a Sinusoidal Graph
- Lesson #8: More Work with the Sine and Cosine Functions (trig identities)
- NOTE: ???? Can't find trig equations in the standards
- Lesson #9: Sinusoidal Modeling
- Lesson #10: The Tangent Function
- Lesson #11: The Reciprocal Function Pearson:833-890

Unit #12: Probability

- Lesson #1: Introduction to Probability
- Lesson #2: Sets and Probability

- Lesson #3: Adding Probabilities
- Lesson #4: Conditional Probability
- Lesson #5: Independent and Dependent Events
- Lesson #6: Multiplying Probabilities

Unit #13: Statistics

- Lesson #1: Variability and Sampling
- Lesson #2: Population Parameters
- Lesson #3 The Normal Distributions
- Lesson #4 The Normal Distribution and Z-Scores
- Lesson #5 Sample Means
- Lesson #6 Sample Proportions
- Lesson #7 The Difference in Samples Means
- Lesson #8 Linear Regression and Lines of Best Fit
- Lesson #9 Other Types of Regression