Common Core Algebra II # **MRS21 Course Overview (Tentative)** | Unit #1 | Algebraic Expressions and Operations on Polynomials | | |---------|--|--| | | Lesson #1: Classifying Polynomials and Evaluating Expressions | | | | Lesson #2: Operations on Polynomials (addition, subtraction, multiplication) | | | Total: | Lesson #3-4: Special Polynomial Identities | | | 6 days | Lesson #5-6: Binomial Expansion | | | Unit #2 | Functions and Their Characteristics | | |---------|---|--| | | Lesson #1: Introduction to Non-Linear Functions | | | | Lesson #2: Function Notation and Composition of Functions | | | Total: | Lesson #3: Domain and Range of a Function | | | 9 days | Lesson #4: Inverses of Linear Functions | | | | Lesson #5: Key Features of Functions | | | | Lesson #6: Solving Systems of Equations Graphically (involving higher degree equation given | | | | in function notation, discuss 3 cases, use calculator) | | | | Lesson #7-9: System of Three Linear Equations | | | Unit #3 | Quadratic Functions and Their Algebra | | |-------------------|--|--| | Total:
14 days | Lesson #1: Review of Factoring Methods(GCF, trinomial, special binomials) Lesson #2: Factoring Completely Lesson #3: Factoring by Grouping Lesson #4: Equivalence of Expressions and Functions (see #5, 20 august, #8, #31 june Lesson #5: Quadratic Function Review Lesson #6: Completing the Square and Shifting Parabolas Lesson #7: Intercept Form of Quadratic Function Lesson #8: Solving Quadratics Using Zero Product Rule Lesson #9: Modeling with Quadratic Functions Lesson #10: Solving Systems Involving Lines, Circles, and Parabolas Algebraically (see #33 june Lesson #11: The Locus Definition of a Parabola Lesson #12-13: Equation of Parabola with Vertex not at the Origin (Horizontal and Vertical Shift) Lesson #14: Writing Equation of Parabola Using Locus Definition | | | Unit #4 | Complex Numbers | |------------------|---| | Total:
5 days | Lesson #1: Imaginary Number Lesson #2: Simplifying Powers of <i>i</i> and intro to Complex Numbers Lesson #3: Operations on Complex Numbers (#27 august Lesson #4: Solving Quadratic Equations with Complex Solutions Lesson #5: The Discriminant and the Nature of the Roots | | Unit #5 | Polynomial Functions and their Algebra | | |-------------------|--|--| | Total:
11 days | Lesson #1: Long Division of Polynomials Lesson #2: Synthetic Division of Polynomials Lesson #3: Application of Synthetic Division of Polynomials Lesson #4: Remainder and Factor Theorem Lesson #5: Solving Higher Degree Polynomial Equations Lesson #6: Writing Equations of Higher Degree Polynomial Functions given their roots Lesson #7: Graphs and Zeros of Polynomial Functions Lesson #8-9: Sketching the Graphs of Polynomial Functions Lesson #10: Even and Odd Functions | | | Unit #6 | Rational Expressions and Equations | | |------------------|---|--| | Total:
7 days | Lesson #1: Simplifying Rational Expressions Lesson #2: Multiplying and Dividing Rational Expressions | | | | Lesson #3-4: Adding and Subtracting Rational Expressions (#17 august | | | | Lesson #5: Complex Fractions Lesson #6: Solving Rational Equations | | | | Lesson #7: Applications of Rational Equations | | | Unit #7 | Powers and Radicals | | |------------------|--|--| | Total:
7 days | Lesson #1: Review of Integer Exponents Lesson #2: Fractional Exponents Lesson #3: Properties of Exponents and Radicals Lesson #4: Simplifying Radical Expressions (#26 august) Lesson #5: Solving Square Root Equations Lesson #6: Solving Cube Root, Forth Root Equations, and Equations with Fractional Exponents | | | 7 days | Lesson #7: EXTENSION Graphing Square Root and Cube Root Functions | | #### Total: 59 lessons. #### On-line resources: - 1. eMath instruction lessons: http://emathinstruction.com/common-core-algebra-ii-all-units-first-draft/ - 2. LearnZillion CC Standards with aligned on-line lessons: https://learnzillion.com/common_core/math/algebra - 3. Mathbitsnotebook: # **Unit #1: Algebraic Expressions and Linear Functions** # • Lesson #1: Classifying Polynomials and Evaluating Expressions | Standards | | | |------------|--|---| | Objectives | State the degree of a polynomial and the number of terms in a polynomial Add and subtract expressions with multivariable terms like -13x²y⁴ Evaluate expressions with multivariable terms Add and subtract polynomials EXTENSION: (see Engage NY Lesson #1 Mod #1) Determine the 1st, 2nd, and 3rd difference of any second degree or third degree polynomial (n-th degree polynomial will have a constant n-th difference) Determine the degree of a polynomial given the table of values generated by a polynomial) | | | Resources | Amsco: p.6-8, p.133-137 | eMath: Unit #1 lesson #1
Engage NY: Lesson #1 Mod #1 | ### • Lesson #2: Multiplying Polynomials | Lesson #2. Wattipfying i olynomiais | | | | |-------------------------------------|---|-----------------------------|--| | Standards | A-SSE.A.2 & A-APR.C.4 Practice MP.7 & MP.8 | | | | Objectives | • Multiply binomials, trinomials, and higher degree polynomials using distributive method
• Use distributive property to prove useful identities such as: $(a+b)^2 = a^2 + 2ab + b^2, \\ (x^n - y^n)(x^n + y^n) = x^{2n} - y^{2n}, \text{ including } (x-y)(x+y) = x^2 - y^2 \text{ and } (x^2 - y^2)(x^2 + y^2) = x^4 - y^4 \\ \text{EXTENSION: Multiply polynomial using area model (tabular method)}$ | | | | Resources | Amsco: p.39 – 40, p.137 | eMath: Unit #1 lesson #4, 5 | | | IMG 1185 | Assessment Readiness p.27 | EngageNY: Mod #1 Lesson # 2 | | #### • Lesson #3: Special Polynomial Identities | Ec33011 #3. 3pc | ni #5. Special Polyholillal Identities | | | |-----------------
---|--|--| | Standards | A-SSE.A.2, A.APR.C.4, & Practice MP.7 | | | | Objectives | x⁴ - y⁴ as (x²)² - (y²)², thus recogn factored as (x² - y²)(x² + y²) use the perfect square binomial identit problems Use sum and difference of cubes identit EXTENSION: Use the polynomial identity (x | dentify ways to rewrite it. For example, see izing it as a difference of squares that can be $ (x - y)^2 = x^2 - 2xy + y^2 $ on more complex ities | | | Resources | Amsco: p.80-88, 93 | eMath: unit # 10 lesson #4 | | | | See assessment readiness questions | Engage NY: Mod #1 Lesson #2, #10 | | # **Unit #2: Functions and Their Characteristics** ### • Lesson #1: Introduction to non-Linear Functions | Standards | MP. 8. Look for and express regularity in repeated reasoning. F-IF.1 | | |------------|--|--| | Objectives | Identify independent and dependent variable | | | | Determine whether relation is a function using the vertical line test | | | |-----------|--|-------------------------------------|--| | | Determine if a function is one-to-one (horizontal line test) or onto | | | | | Distinguish between different types of functions (linear, quadratic, absolute value, | | | | | square root, exponential) given their equations and/or graphs | | | | Resources | Amsco: p.48 - 49 | eMath: Unit #2 lesson #1, lesson #5 | | | | | Engage NY: | | ### Lesson #2: Function Notation and Composition of Functions | Standards | F-IF.1, F-IF.2 | | | |------------|---|-------------------------------------|--| | Objectives | Recognize and interpret different function notations | | | | | • Given f(x) (linear or quadratic), find f(x-a) or f(x+a) where 'a' is rational number | | | | | Evaluate a given function for a given value | | | | | Given equations of functions, find composition of functions using two different notations | | | | | f(g(x)) or f o $g(x)$ | | | | | Find composition of functions using graphs of functions | | | | Resources | Amsco: p.22-24, | eMath: Unit #2 lesson #2, lesson #3 | | | | | Engage NY: | | # • Lesson #3: Domain and Range of a Function | Standards | F-IF.1, F-IF.5 | | |------------|--|---| | Objectives | graph | f the domain, find the corresponding value of | | | Find restricted domain and range of rational and radical functions | | | Resources | Amsco: | eMath: unit #2 lesson 4 | | | | Engage NY: | # • Lesson #4: Inverses of Linear Functions | Standards | F-BF.4 | |------------|--| | Objectives | Define inverse of a function Find inverse of a linear function algebraically (in a slope-intercept form or point-slope form) and graphically Find inverse of different functions given a table of values, an equation, or a graph Explore the inverse relationship of linear functions using graphing calculator EXTENSION: find an inverse of cubic and square root functions | | Resources | Amsco: p.281-285 Pearson: 409-410 eMath: Unit #2 lesson #6, Unit #3 lesson #5 | # • Lesson #5: Key Features of Functions | Standards | F-IF.4 | | | |------------|---------------------------------|--|--| | Objectives | State zeros of a function given | nimum and maximum of a function sing intervals of a function | | | Resources | Amsco: | eMath: unit #2 lesson #7 Engage NY: | | Lesson #6: Solving Systems of Equations Graphically | Standards | F-IF.4 | | |------------|--|--| | Objectives | (involving higher degree equation given in function notation, discuss 3 cases, use calculator) | | | Resources | Amsco: | eMath: unit #2 lesson #7
Engage NY: | • Lesson #7-8: System of Three Linear Equations | Lesson in 6. System of three Emedi Equations | | | |--|---|-----------------------------| | Standards | MP 7. Look for and make use of structure. MP 1. Make sense of problems and persevere in | | | | solving them. | | | Objectives | (#23 august, algebraically, calculator, application) | | | | Solve system of linear equations with three variable by using elimination or substitution | | | | Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. EXTENSION: Given three points of the parabola, write a quadratic equations for this function | | | | | | | Resources | Amsco: p.72-74 | eMath: Unit #3 lesson #7 | | | | Engage NY: Mod 1 lesson #30 | # **Unit #3: Quadratic Functions and Their Algebra** • Lesson #1: Review of Factoring Methods | | 20000111121101101101101101101101010 | | | |------------|---|--------------------------|--| | Standards | N-Q.A.2, A-SSE.A.2, A-APR.B.2, A-APR.B3, A-APR.D.6, F-IF.C.7c. MP 7: Look for and make use of | | | | | structure | | | | Objectives | Factor using GCF | | | | | Factor using the difference of two perfect squares | | | | | Factor quadratic trinomials with leading coefficient 1 | | | | | Factor perfect square trinomials | | | | Resources | Amsco: p.79 - 80 | eMath: unit #6 lesson #2 | | | | · | Engage NY: | | # Lesson #2: Factoring Completely | Standards | N-Q.A.2, A-SSE.A.2, A-APR.B.2, A-APR.B3, A-APR.D.6, F-IF.C.7c | | | |------------|---|---|--| | Objectives | Factor more complex difference of position Factor polynomials completely Apply factoring strategies to solve a research | Factor more complex difference of perfect squares and perfect square trinomials Factor polynomials completely Apply factoring strategies to solve a real-world problem EXTENTION: Factor polynomials with a binomial common factor. Ex: x²(2x + 1) - 4(2x + 1) | | | Resources | Amsco: p.80 – 83, 85 | eMath: unit #6 lesson #4 | | | IMG 1227 | | Engage NY: Mod #1 Lesson #13 | | Lesson #3: Factoring by Grouping | Standards | A-REI.4.b | | |------------|--|----------------------------------| | Objectives | Factoring four-term polynomials by identifying a common binomial factor(by grouping) | | | | Factoring quadratic trinomials with a>1 by grouping | | | Resources | Amsco: p.84, 88 | eMath: unit #6 lesson #5 | | | | Engage NY: Mod #1 Lesson #12, 13 | Lesson #4: Equivalence of Expressions and Functions | Standards | MP 7. Look for and make use of structure. MP 1. Make sense of problems and persevere in solving them. | | |------------|---|---| | Objectives | Use polynomial identities to show that two expressions are equivalent Use polynomial identities to prove that an equation is an identity | | | Resources | Amsco: p.72-74 | eMath: Unit #3 lesson #7
Engage NY: Mod 1 lesson #30 | • Lesson #4: Quadratic Function Review (standard form, axis of symmetry, vertex, intercepts) | Standards | F-IF.4, F-IF.7.a | | |------------|--|--| | Objectives | Sketch parabola given its equation in a standard form Find main
characteristics of a parabola such as turning point (vertex), axis of symmetry, and x and y-intercepts State domain and range of a given quadratic Indicate the interval on which the function is positive or negative, increasing and decreasing | | | Resources | Amsco: | eMath: unit #6 lesson #1
Engage NY: | • Lesson #5: Completing the Square and Shifting Parabolas (getting parabola to vertex form and analyzing the shift of a vertex) | Of a vertexy | | | |--------------|--|--| | Standards | F-IF.8.a, F-BF.3 | | | Objectives | Rewrite quadratic equation from standard form to a vertex form Given the vertex form of the equation state the turning point Introduce transformation notation of a function af(x-h)+k and analyze the horizontal and vertical shift of a vertex of a parabola EXTENSION: Compare completing a square method to other methods of solving quadratics | | | Resources | Amsco: p.42-43 | eMath: unit # 6 lesson #8
Engage NY: Mod #1 Lesson # 35 | • Lesson #6: Intercept Form of Quadratic Function | Standards | F-IF.8.a, F-BF.3 | | |------------|------------------|--------| | Objectives | | | | Resources | Amsco: | eMath: | | | | | # Lesson #7: Solving Quadratics Using Zero Product Rule | Standards | A.APR.B.3, F-IF.8.a | | |------------|---|--------------------------| | Objectives | Solving quadratics by factoring, including factoring by grouping | | | | Writing equation of quadratic by identifying the roots from the graph and working
backwards | | | Resources | Amsco: p.89-91 | eMath: unit #6 lesson #6 | | | | Engage NY: | # • Lesson #8: Modeling with Quadratic Functions | Standards | F-IF.8.a, F-IF.9, F-IF.4, F-IF.5 | | |------------|---|--------------------------| | Objectives | Real world application of quadratic function (finding maximum height, time an object lasts in the air, etc.) Create a graph of a quadratic using appropriate scale related to a given word problem Explain the meaning of x and y-intercepts in the context of the problem Use graphing calculator | | | Resources | Amsco: | eMath: unit #6 lesson #9 | | | Big Ideas: Chapter 2.4 | Engage NY: | # • Lesson #9: Systems Involving Lines, Circles, and Parabolas | , | , , | | |------------|--|---------------------------------| | Standards | A-REI.7 | | | Objectives | Review of distance formula and general equation of a circle | | | | Solving systems of linear-circular, circular-parabolic equations graphically | | | | Solve algebraically and graphically a system | of linear-quadratic equations | | Resources | Amsco: p.175-178 | eMath: unit #6 lesson #10 | | | | Engage NY: Mod 1 lesson #31, 32 | ### • Lesson #10: The Locus Definition of a Parabola | Standards | G-GPE.A.2, F-EF.8 | | |------------|--|--| | Objectives | down, left or rightWrite an equation of a parabola cenIdentify vertex, focus, and directrix of | $y = \frac{1}{4p}x^2$ or $x = \frac{1}{4p}y^2$ to determine if it opens up, itered at the origin and with a given focus of a parabola given its equation its equation in the above described forms | | Resources | Amsco: p. 118-125 Pearson: 622 - 625
Big Ideas: Chapter 2.3 | eMath: unit #6 lesson #11
Engage NY: mod 1 lesson #33, 34
Pearson: p.622 | # • Lesson #11-12: Equation of Parabola with Vertex not at the Origin | | 1 | |------------|---| | Standards | G-GPE.A.2 | | Objectives | Represent vertical and horizontal shifts of a parabola with an appropriate analytic | | | equation in the form of $(x - h)^2 = 4p(y - k)$, $(y - k)^2 = 4p(x - h)$ | | | Find the vertex, focus, and directrix of a given parabola in the above mentioned form | | | Match equation of the parabola in analytic form with its corresponding graph | | | Find vertex of a parabola given its analytic equation | | Resources | Amsco: p. 118-125 Pearson: 626-629 | eMath: unit #6 lesson #11 | |-----------|------------------------------------|---------------------------------| | | Assessment Readiness: p.101 -102 | Engage NY: mod 1 lesson #33, 34 | | | | Pearson: p.626 | • Lesson #13: Writing Equation of Parabola Using Locus Definition | Standards | G-GPE.A.2 | | |------------|--|---------------------------------| | Objectives | Write an equation of a parabola with given vertex and focus Write an equation of a parabola with given vertex and directrix Write equation of a directrix given focus and vertex Find the equation of the set of points which are equidistant from a given point and a directrix (example: point (4, -2) and the line y =4). Sketch this set of points EXTENSION: | | | Resources | Write an analytic equation of a parabola Amsco: p. 118-125 | eMath: unit #6 lesson #11 | | | · | Engage NY: mod 1 lesson #33, 34 | # Unit #4: Complex Numbers • Lesson #1: Imaginary Number | Standards | N-CN.A.1, N-CN.A.2, N-CN.C.7, MP 8. Look for and express regularity in repeated reasoning. | | |------------|--|------------------------------| | Objectives | State the definition of the imaginary unit <i>i</i> and pure imaginary numbers | | | | Simplifying radicals with the negative radicands | | | | Solve incomplete quadratics which lead to imaginary roots | | | | Simplifying powers of i | | | Resources | Amsco: p.103-105 | eMath: unit #9 lesson #1 | | | | Engage NY: Mod #1 Lesson #37 | ### • Lesson #2: Operations on Complex Numbers | Standards | N-CN.A.1, N-CN.A.2, N-CN.A.4, N-CN.C.7 | | |------------|---|--| | Objectives | Adding and subtracting complex numbers Finding conjugates of complex numbers Multiplying complex numbers Extension: Graph complex numbers on a complex plane | | | Resources | Amsco: p. 103-105 | eMath: unit #9 lesson #2
Engage NY: Mod #1 Lesson #38 | # • Lesson #3: Solving Quadratic Equations with Complex Solutions | Standards | N-CN.C.7, A-REI.B.4b | | |------------|---|--| | Objectives | Solve quadratic equations with complex roots using quadratic formula and square root method Rewrite quadratic equation in a factored form using its real and complex roots | | | | Counting multiplicities –quadratics having | ng two roots in the complex numbers system | | Resources | Amsco: p. 108-113 | eMath: unit # 9 lesson #3 | | | | Engage NY: | # • Lesson #4: The Discriminant and the Nature of the Roots | Standards | N-CN.C.7, A-REI.B.4b, A-APR.3, F-IF.8a MP 3 Construct viable argument and critique the | | |------------|--|--| | | reasoning of others, MP 7 Look for and make use of structure | | | Objectives | define and determine the value of the discriminant | | | | determine the nature of the roots using the discriminant | | | | Describe how finding discriminant relates to finding x-intercept of a parabola | | | | Construct viable argument and critique the reasoning of others | | | Resources | Amsco: p. 108 - 113 | eMath: unit #9 lesson #4 | |-----------|---------------------|------------------------------| | | | Engage NY: Mod #1 Lesson #39 | # Unit #5: Polynomial Functions and their Algebra ### • Lesson #1: Long Division of Polynomials | Lesson with Long Division of Confidentials | | | |--|---
------------------------------| | Standards | A-APR.B.2, A-APR.6, A-APR.7, MP 6 Attend to precision | | | Objectives | Divide different degree polynomials by a binomial using long division | | | | Insert terms with zero as a coefficient for "missing powers" | | | | Using long division determine if a given binomial is a factor of a given polynomial | | | Resources | Amsco: p.138 – 141, Pearson: 304-306 | eMath: Unit #10 Lesson #10 | | | Big Ideas: Chapter 4.3 | Engage NY: Mod #1 Lesson #18 | # • Lesson #2: Synthetic Division of Polynomials | Standards | | | |------------|--|------------| | Objectives | Dividing polynomials applying the method of synthetic division | | | Resources | Amsco: p.142 – 143 | eMath: | | | Big Ideas: Chapter 4.3 | Engage NY: | ### • Lesson #3: Remainder and Factor Theorem | Lesson #3. Re | mamuer and Factor Theorem | | | |---------------|--|---|--| | Standards | A-APR.D.6, A-APR.B.2 | | | | Objectives | Evaluating polynomial by the Remainder Theorem Determine if a given polynomial is divisible by a given binomial factor (The Factor Theorem) Show how the Remainder theorem can help determine if a given number is the root of the polynomial. (NOTE: If r is a root of a polynomial then x - r is a factor of a | | | | Resources | Amsco: 147 - 151 | | | | | | Engage NY: Mod #1 Lesson #18, 19. See Lesson #20-21 for application of the Rem. Theorem | | # • Lesson #4 - 5: Finding Roots of Higher Degree Polynomial Equations | Standards | A.APR.B.3, N-CN.C.7, F-IF.7.C MP 6 Attend to precision, MP7 Look for and make sense of structure | |------------|---| | Objectives | Test if a given number is the solution of a higher degree polynomial equation using the Remainder Theorem using Fundamental Theorem of Algebra state the number of zeros of a polynomial function solve a polynomial equation of 3rd degree given one of the factors and by applying synthetic division to find the remaining factors State the multiplicity of roots of a polynomial function Solve high order polynomials by factoring completely where some of the factors are complex numbers (Example: x⁴ -3x² - 4 = 0 as (x + i)(x - i)(x + 2)(x - 2)) Next lesson State the difference between the solution(s) of the equation and x-intercepts (solutions) | | | State the difference between the solution(s) of the equation and x-intercepts (solutions | | | may include complex numbers, x-intercepts are real solutions of the equation) Construct a polynomial function in a factored form that has a specified set of zeros with stated multiplicity (including complex factors) EXTENSION: Descartes' Rule of signs | | |-----------|---|---| | Resources | Amsco: p.152-154, 160-161 Pearson: 288-293, 296 Decart's rule 165-167 | eMath: unit # 10 lesson #
See Engage NY: Mod #1 Lesson #11, 39 | ### Lesson 5: - Classify polynomials by degree - Give an example of a quadratic equation with two distinct real solutions, one real solution, or two complex solutions - Factor polynomial of the form $(x^2 + a)$ as (x + ai)(x ai)(Example: $x^2 + 9 = (x + 3i)(x - 3i)$ - Determine if a complex number is a solution to a given quadratic • Lesson #6: Graphs and Zeros of a Polynomial Function. | 20000111101 Oraphio and 20100 of a 1 or) Horman and and | | | |---|--|--------------------------------------| | Standards | F-IF.7.c, N-CN.9, A-APR.3 | | | | MP 5 Use appropriate tools strategically, MP 3 Construct a viable argument to critique the | | | | reason of others, MP 7 Look for and make use of structure | | | Objectives | Determine the number of real zeros, complex zeros, given the graph of a function and its equation Determine the degree of a polynomial function given its graph Create a sketch of higher degree polynomial function utilizing graphing calculator | | | | Critique reasoning of others | | | | EXTANSION: determine degree of a polynomial by finding consecutive differences | | | Resources | Amsco: p.154-164 Pearson: 280-287 | eMath: unit # 10 lesson #2,3 | | | | See Engage NY: Mod #1 Lesson #14, 40 | # • Lesson #7: Even and Odd Degree Functions | Standards | | | |------------|--|----------------------------------| | Objectives | State characteristics of odd and even degree functions Identify the type of a given function based on a graph | | | | Investigate graphs of polynomial functions (the number of relative minima and maxima, increasing and decreasing intervals) Sketch polynomial functions using its properties | | | | Sketch polyhormal functions using its properties | | | Resources | Amsco: p.52 | eMath: Unit #7 Lesson #5 | | | | See Engage NY: Mod #1 Lesson #15 | # • Lesson #8: Structure in Graphs of Polynomial Functions | Standards | | |------------|---| | Objectives | Determine end behavior of polynomial functions by looking at the leading coefficient Match graphs of polynomial functions with their corresponding equations Find a polynomial function given its zeros or given its graph Use factored form of a polynomial function to sketch the components of its graph between zeros EXTENSION: Real word application of polynomial function (create appropriate graphical representation) | | Resources | Amsco: p.159-164, Pearson 325 | eMath: unit # lesson # | |-----------|-------------------------------|------------------------| | | | See Engage NY: | # **Unit #6: Rational Expressions and Equations** • Lesson #1: Simplifying Rational Expressions | Standards | A-APR.C.6, A-REI.A.2 | | |------------|--|--| | Objectives | State which values will make the rational expression undefined State the domain of a rational function Reduce rational expressions to lowest terms Determine if the given two rational expressions are equivalent | | | Resources | Amsco: p. 185-187 Pearson: 527, 531 | eMath: Unit #10 Lesson #6
See Engage NY: Mod #1 Lesson #22,23 | ### • Lesson #2: Multiplying and Dividing Rational Expressions | | <u>, , , </u> | | |------------|--|----------------------------------| | Standards | Practice MP.7, A-APR.D.6 | | | Objectives | Multiply and divide rational expressions and express them in a simplest form | | | | Simplify complex fractions by the process of dividing one rational expression by another | | | Resources | Amsco: p.187 – 192 Pearson: 528-533 | eMath: Unit #10 Lesson #7 | | | | See Engage NY: Mod #1 Lesson #24 | ### • Lesson #3: Adding and Subtracting Rational Expressions | Standards | Practice MP.7, A-APR.C.6 | | |------------
---|--| | Objectives | Find a common multiple of the denominators to use as a common denominator Find equivalent rational expressions for each expressions using the common denominator Complete multistep problem involving adding, subtracting, multiplying, and dividing rational expressions | | | Resources | Amsco: p. 192 – 197 Pearson: 534 - 540 | eMath: Unit #10 Lesson #8 See Engage NY: Mod #1 Lesson # | ### • Lesson #4: Complex Fractions | Standards | | | |------------|--|--------------------------------| | Objectives | Simplify complex fractions by the process of dividing one rational expression by another | | | Resources | Amsco: p.190, 192 eMath: Unit #10 Lesson #9 | | | | | See Engage NY: Mod #1 Lesson # | #### Lesson #5: Solving Rational Equations | Standards | A-REI.A.2, F-BF.B.4a, Practice MP.7 | | |------------|---|----------------------------------| | Objectives | Solve rational equations by cross-multiplying or multiplying each term by a common denominator Check for extraneous solutions EXTENSION: word problems leading to rational equations (see Engage NY Mod #1 Lesson #27) | | | Resources | Amsco: p.197 – 204 Pearson: 542 - 547 | eMath: Unit #10 Lesson #12 | | | | See Engage NY: Mod #1 Lesson #26 | • Lesson #6: Solving word problems leading to rational equations ### **Unit #7: Powers and Radicals** # • Lesson #1: Review of Integer Exponents | Standards | | | | |------------|---|--------------|---| | Objectives | Use appropriate laws of exponents to simplify expressions with positive, negative, and
zero exponents | | | | | Rewrite expressions using only positive exponents | | | | Resources | Amsco: | Pearson: 360 | eMath: Unit #8 Lesson #3, Unit #4 Lesson #1 | | | | | See Engage NY: Mod #1 Lesson # | # Lesson #2: Fractional Exponents | Standards | N-RN.A.1 | | |------------|---|--| | Objectives | Simplify expressions including rational exponents | | | | Multiply and divide expressions with rational exponents | | | | EXTENSION: Irrational Exponents ($2^{\sqrt{2}}, 2^{\pi}$) | | | Resources | Amsco: p.241 Pearson: 381-387 | eMath: Unit #4 Lesson #2 , Unit #8 Lesson #5 | | | | See Engage NY: Mod #1 Lesson #9 | # • Lesson #3: Properties of Exponents and Radicals | Standards | N-RN.A.2 | | |------------|---|---------------------------------| | Objectives | Rewrite expressions involving radicals in terms of rational exponents using the
properties of exponents | | | | Simplify more complex expressions with | n radicals | | Resources | Amsco: p.241 – 244, Pearson:363 -380 | eMath: | | | | See Engage NY: Mod #1 Lesson #9 | # • Lesson #4: Simplifying Radical Expressions | Standards | | | |------------|---|--| | Objectives | Simplify square roots and cubed roots with variables and exponents as radicands (including negative radicands) Rationalize the denominator in a given expression Adding, multiplying, dividing radicals | | | Resources | Amsco: p.224 – 230, 237 -238 Pearson: 363 - 380 | eMath:
See Engage NY: Mod #1 Lesson #9,28 | # • Lesson #5: Solving Square Root Equations | Standards | | | | |------------|--|--|--| | Objectives | Solve radical equations and check for extra Justify the steps in solving radical equation Solving radical equations by moving one of equation and squaring both sides of the equation and squaring both sides of the equation and variations of i Identify radical equations that do not have | ns
f the radicals to the opposite side of the
quation
it) | | | Resources | | eMath: Unit #8 Lesson #2
See Engage NY: Mod #1 Lesson #28,29 | | • Lesson #6: Solving Cube Root, Forth Root Equations, and Equations with Fractional Exponents | Standards | | | |------------|---|--------------------------------| | Objectives | Solve radical equations with higher index value by raising both sides of the equation to
an appropriate power | | | | Solve equations with fractional exponents | | | Resources | Amsco: p.249, 257 | eMath: Unit #4 Lesson #2 | | | | See Engage NY: Mod #1 Lesson # | • Lesson #7: Graphing Square Root and Cube Root Functions (using calculator, and stating domain, range and translations) | Standards | | | |------------|---|--------------------------------| | Objectives | Graph square root and cube root functions using calculator Describe the characteristics of the above functions (domain, range, intervals of increase and decrease, end behavior) | | | | Sketch vertical and horizontal translations of the above functions | | | Resources | Amsco: p.251 – 255 Pearson: 414-420 | eMath: Unit #8 Lesson #1 | | | | See Engage NY: Mod #1 Lesson # | # **Unit #8: Sequences and Series** • Lesson #1 - 2: Review of Geometric and Arithmetic Sequences | Standards | F-BF.1.A | | | |------------|---|--|--| | Objectives | Determine if a given sequence is arithmetic or geometric | | | | | Write explicit equations of a given | • Write explicit equations of a given geometric ($a_n = a_1 r^{n-1}$) or arithmetic sequence | | | | $(a_n = a_1 + (n-1)d)$ | | | | | Compare and contrast the explicit formula of two sequences | | | | | Find the nth term of an arithmetic or geometric sequence | | | | Resources | Amsco: Pearson: 574-586 | eMath: Unit # Lesson # | | | | Big Ideas: Chapter 8.1, 8.2 | See Engage NY: Mod #1 Lesson # | | • Lesson #3: Explicit and Recursive Formula for Geometric and Algebraic Sequences | Standards | F-BF.2, F-EF.8 | | | |------------|--|--------------------------------|--| | Objectives | Write a recursive rule for given sequence of numbers (arithmetic and geometric) | | | | | Apply recursive definition of arithmetic or geometric sequences to find several terms of | | | | | a given sequence | | | | | Translate a recursive rule into explicit equation and vice versa | | | | Resources | Amsco: Pearson: 567-571 | eMath: | | | | Big Ideas: Chapter 8.5 | See Engage NY: Mod #1 Lesson # | | • Lesson #4: Arithmetic and Geometric Series and Sigma Notation | Lesson in 1.7 Antimiente and Geometrie Series and Signia Notation | | | | | |---|---|--|--|--| | Standards | F-BF.2, F-EF.8 | | | | | Objectives | Compare and contrast sequences and series | | | | | | State the formula of a sum of Arithmetic and Geometric Series | | | | | | Find the sum of the first n terms of a given series Find sums using Sigma notation | | | | | | | | | | | Resources | Amsco: Pearson: 588-600 eMath: | | | | | _ | | | |---|--------------------------------|----------------------------------| | | Distribution Character 0.2.0.4 | Con France NIV: NACH HA Lancon H | | | Big Ideas: Chapter 8.3, 8.4 | See Engage NY: Mod #1 Lesson # | # • Lesson #5: Geometric Series Application | Standards | F-LE.A.2, F-BF.1.A, F-BF.2 | | |------------|--|--------------------------------| | Objectives |
Write an explicit rule for the geometric sequence that models a real life problem and solve the problem Given table of values that represents money earning scenario determine the rule needed to find money saved in 'n' weeks Match recursive definition of geometric series with a real life scenario | | | Resources | Amsco: | eMath: | | | See IMG | See Engage NY: Mod #1 Lesson # | **SEE NEXT PAGE for MRS22 Overview** #### **MRS22 Tentative Course Overview** #### Unit #9: Exponential and Logarithmic Functions - Lesson #1: Exponential Functions Basics (general form, determine if it is a growth or decay model based on a given equation or a graph) - Lesson #2: Finding Equations of Exponential Functions (from a table or a graph, or coordinates of two points) - Lesson #3: Solving Exponential Equations by Finding a Common Base - Lesson #4: Modeling with Exponential Growth and Decay - Lesson #5: Introduction to Logarithms - Lesson #6: Graphs of Logarithmic Functions (including inverse relation between logarithmic and exponential functions) - Lesson #7: Laws of Logarithms (possibly 2 days) - Lesson #8: Natural and Base-10 Logarithms - Lesson #9: Solving Logarithmic Equations - Lesson #10: Solving Exponential Equations Using Logarithms - Lesson #11: Compound Interest Problems . | Unit #8 | Sequences and Series | | |---------|--|--| | | Lesson #1 - 2: Review of Geometric and Algebraic Sequences | | | | Lesson #3: Explicit and Recursive Formula for Geometric and Algebraic Sequences | | | Total: | Lesson #4: Arithmetic and Geometric Series and Sigma Notation | | | 5 days | Lesson #5: Geometric Series Application | | | | !!! NOTE: heavy emphasis on recursive definition of geometric sequence in the contex of
word problem. More days might be needed. | | #### Unit #10: Transformations of Functions - Lesson #1: Shifting and Reflecting Functions (quadratic, exponential, square root functions, reference to notation af(x – h) +k) - Lesson #2: Key features of Different types of functions (domain, range, end behavior, increase/decrease, roots) - Lesson #3: Rate of Change of Quadratic and Exponential Functions #### Unit #11: Circular Functions - Trigonometry Consider starting with periodic functions intro Pearson: 828-834 - Lesson #1: Rotations and Angle Terminology - Lesson #2: Radian Angle Measurement - Lesson #3: The Unit Circle - Lesson #4: The Definition of the Sine and Cosine Functions - Lesson #5: Basic Graphs of Sine and Cosine - Lesson #6: Vertical and Horizontal Shifting of Sinusoidal Graphs - Lesson #7: The Frequency and Period of a Sinusoidal Graph - Lesson #8: More Work with the Sine and Cosine Functions (trig identities) - NOTE: ???? Can't find trig equations in the standards - Lesson #9: Sinusoidal Modeling - Lesson #10: The Tangent Function - Lesson #11: The Reciprocal Function Pearson:833-890 #### Unit #12: Probability - Lesson #1: Introduction to Probability - Lesson #2: Sets and Probability - Lesson #3: Adding Probabilities - Lesson #4: Conditional Probability - Lesson #5: Independent and Dependent Events - Lesson #6: Multiplying Probabilities #### Unit #13: Statistics - Lesson #1: Variability and Sampling - Lesson #2: Population Parameters - Lesson #3 The Normal Distributions - Lesson #4 The Normal Distribution and Z-Scores - Lesson #5 Sample Means - Lesson #6 Sample Proportions - Lesson #7 The Difference in Samples Means - Lesson #8 Linear Regression and Lines of Best Fit - Lesson #9 Other Types of Regression